Continuous Piecewise Linear Approximation of BV Function

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous Piecewise Linear Approximation of BV Function

Nonlinear approximation is widely used in signal processing. Real-life signals can be modeled as functions of bounded variation. Thus the variable knot of approximating function could be selfadaptively chosen by balancing the total variation of the target function. In this paper, we adopt continuous piecewise linear approximation instead of the existing piecewise constants approximation. The re...

متن کامل

Piecewise Linear Orthogonal Approximation

We derive Sobolev-type inner products with respect to which hat functions on arbitrary triangulations of domains in R are orthogonal. Compared with linear interpolation, the resulting approximation schemes yield superior accuracy at little extra cost.

متن کامل

Efficient Piecewise-Linear Function Approximation Using the Uniform Metric

We give an O(n log n)-time method for nding a best k-link piecewise-linear function approximating an n-point planar data set using the well-known uniform metric to measure the error, 0, of the approximation. Our method is based upon new characterizations of such functions, which we exploit to design an eecient algorithm using a plane sweep in \ space" followed by several applications of the par...

متن کامل

Approximation by Piecewise Constant Functions in a Bv Metric

In mathematical models for crystal microstructure [1,2,27], the deformation gradient is nearly piecewise constant in space to enable the deformation to attain a low energy. The length scale of the microstructure is limited by a surface energy associated with the transition from one piecewise constant variant phase to another piecewise constant variant phase [1, 27]. Motivated by these models, n...

متن کامل

Efficient algorithms for function approximation with piecewise linear sigmoidal networks

This paper presents a computationally efficient algorithm for function approximation with piecewise linear sigmoidal nodes. A one hidden layer network is constructed one node at a time using the well-known method of fitting the residual. The task of fitting an individual node is accomplished using a new algorithm that searches for the best fit by solving a sequence of quadratic programming prob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics

سال: 2014

ISSN: 2152-7385,2152-7393

DOI: 10.4236/am.2014.54063